美股交易员_自动化交易:高频与量化的区别(包括一些误区) 美股洋财网:全球华尔街一流美股交易员, 外汇交易员的交易策略分享平台! 一般来说,高频交易公司和量化投资公司既有联系,又有区别。在美国,人们常说的高频交易公司一般都是知名自营交易部门或公司,这些公司主要有高盛自营部,摩根斯坦利自营部,Getco自营公司等;而常说的量化投资公司一般都是基金,包括DE Shaw、Two Sigma、Citadel等。此外,Citadel、Two Sigma等公司,既有高频交易业务,又有量化投资业务;DE Shaw等公司,既有量化投资,又有非量化投资——很多公司朝着更综合的方向发展。 从历史上看,很多高频交易公司的创始人都是交易员出身,原来就从事衍生品的做市、套利等业务。一开始这些工作并不需要多高深的知识。随着计算机技术的发展,交易的自动化程度和频率也逐渐提高,这些公司逐渐聘请一些数学、统计、计算机背景较强的人员加入以适应形势的发展。当然,这个过程也出现了一些分化,有的公司还是保留了交易员在公司的主导地位,并且始终未放弃人工交易,最终形成了人机结合的半自动交易;而另外一些公司对新鲜技术的接受程度更高一些,往往采取全自动的交易模式。事实上,也没有证据表明全自动交易的公司就比半自动交易的公司更为优越,到目前为止,也只能说是各有利弊。 人工交易的最大弊端在于手动下单的地方离交易所较远,在行情剧变的时候往往抢不到单。在这一点上,全自动交易的公司可以通过托管机房来最大程度减少信号传输的时间,不过自动化交易往往因为程序过于复杂,加上很多公司人员流动较大,在程序的维护上会出现一些失误,最终程序出错酿成大祸,比如著名的骑士资本。 至于过度拟合无法抵御黑天鹅事件,那是人工交易和自动交易都无法避免的问题。一般来说,Getco是半自动交易,高盛等自营部是全自动交易。 量化投资公司跟高频交易公司则有很大的不同。首先,美国的量化投资公司基本上都是量化背景极强的人创办的,比如说文艺复兴的创始人西蒙斯是数学家出身,DE Shaw的创始人David Shaw是计算机教授出身,AQR的创始人Cliff Asness是金融学家出身,而高频交易公司则更多是传统交易员创办的;其次,量化投资一般依赖于复杂的模型,而高频交易一般依赖于运行高效的代码或者快速的人工下单。 量化投资公司的持仓时间往往达到1—2个星期,要预测这么长时间的价格趋势需要处理的信息自然非常庞大,模型也因此更为复杂,对程序的运行速度反而没那么敏感;高频交易处理信息的时间极短(微秒或毫秒级),不可能分析很多的信息,因此模型也趋于简单,对于交易者本身对于交易经验和盘感的反应速度更重要。而最后,量化投资的资金容量可达几百亿美元,而高频交易公司往往只有几千万至几亿美元,但由于高频交易的策略表现远比量化投资稳定,如Virtu Financial交易1238天只亏1天,因此一般都是自营交易,而量化投资基金一般来说都是帮客户投资。 量化模型无法战胜黑天鹅事件 事实上,任何投资方法都是依靠历史预测未来,都害怕黑天鹅事件,都会有回撤。量化的好处在于遇到回撤之后,可以迅速把最新的情况纳入模型,及时调整,重新回测、优化、模拟,争取在最短的时间内扭转损失。比如文艺复兴在2007年8月遭遇历史上罕见的9%回撤之后,西蒙斯采取果断措施,重新建模,在致投资者的信中他宣称“我们新的模型已经发现了3个很强的交易信号”,结果在接下来的日子很快扳回损失,当年的收益率达到80%。 长期资本管理公司(LTCM)就是因为用了量化模型而破产的。事实上,LTCM是一个多策略基金,它的纯量化交易策略最后在1998年还是赚了1亿美元,它亏损最多的策略都是交易流动性极差的柜台衍生品,很多甚至是它自己设计来跟投行对赌的产品,遇到黑天鹅事件无法及时清理头寸。这些产品一般只是在定价时候使用量化模型辅助一下,具体的交易执行、产品设计、销售等都跟量化无关,一般认为LTCM的破产更多是因为流动性风险,跟模型关系不大。 而对于黑天鹅事件,高频交易公司却是最大的受益者,凭借着快进快出,屡屡实现以小博大,赚的盆满钵满的情况。这被指责为损害其他市场参与者利益。 高频交易损害投资者利益 像《Flash Boys》等书籍的观点其实都很有争议的,只不过作者文笔极佳,叙事手法极富煽动性,所以才吸引了众多的眼球。除了媒体之外,应该说美国目前要求禁止高频交易最为强烈的,基本上都是当年的传统交易员。正因为新兴的、依靠先进技术的高频交易公司把他们打败了,他们心有不甘,所以才组织更多的力量来进行反击。由于这些人都是市场老手,所以对这个市场还是非常熟悉的,提的观点也有可取的地方。 美股洋财网:全球华尔街一流美股交易员, 外汇交易员的交易策略分享平台! (责任编辑:admin) |